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Abstract-Uniqueness of deformation and stability of the equilibrium configuration of a long closed-ended
cylinder of rigid-plastic material, obeying the von Mises yield criterion, are examined under internal pressure
and axial tensile load. Sufficient conditions are derived for uniqueness of the current state of the finitely
deformed cylinder. By considering a material model of the Ramberg-Osgood type, it is shown that uniqueness
is guaranteed up to a stage when either of the loads (or both) attains a maximum. For such a material model,
"pressure-tension interaction curves" are obtained for some values of the wall-ratio and the strain-hardening
index. Under internal pressure and small tension, however, the possibility of a bifurcation preceding a
stability loss is shown to exist for certain cylinder geometry and material hardening properties.

INTRODUCTION

In a series of papers, Hill[l-3] presented a mathematical theory of uniqueness of deformation
and stability of rigid-plastic solids. For uniqueness, a certain functional of the difference of two
virtual velocity fields was required to be positive; for stability in the classical dynamic sense, the
requirement was the positive-definiteness of the same functional for a single virtual velocity field
(a virtual field is to be interpreted as one which satisfies kinematic boundary conditions and is
constitutively admissible). The general conclusion was that for rigid-plastic solids uniqueness
implies stability but not necessarily vice-versa. The earlier work of Swift[4] contained only the
stability investigation of rigid-plastic solids; the instability was supposed to occur when one or
more loads reached a peak value.

Only a few problems appear to have been solved for rigid-plastic solids when two or more
types of load act simultaneously. The stability of a thin-tube under internal pressure and tension
was investigated by Swift [4], Hillier[5] and Yamada and Aoki[6], each using a different
formulation. All these investigations were performed in the light of "thin-wall approximation".
Moreover, these authors either restricted their analyses to the examination of stability alone or
solved the problem of uniqueness of deformation by considering uniform modes only. Recent
studies of Miles [7] and Storlikers[8] take full account of the admissible velocity fields in the
respective problems and show that possibilities exist for a bifurcation to occur preceding a
stability loss. The present investigation is undertaken to investigate such possibilities in long
closed-ended cylinders under internal pressure and axial tension. The analysis is performed using
Hill's sufficient condition for uniqueness, which, for the sake of completeness, is discussed next.

UNIQUENESS CRITERION

Suppose at some instant t during a process of continuing deformation, a part Sp of the surface
of the body is subject to a uniform fluid pressure p(t), with a given pressure-rate p. In addition,
suppose that the nominal traction-rates t and the velocity Vj are prescribed on parts ST and the
remainder S., respectively, of the surface. Then, following Hill's[9] general treatment of
configuration-dependent loadings, a sufficient condition to guarantee uniqueness of the
subsequent incremental deformation is that

(1)

tPresently at: Civil Engineering Department, Indian Institute of Technology, Kanpur, India.
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where V is the current volume of the body, ni is the unit outward normal to the surface, the prefix
~ denotes the difference of corresponding quantities in two solutions, Sij is the material derivative
of the nominal (Lagrangian) stress Sij, measured with respect to a fixed Cartesian frame of
reference Xi at the instant t, and a comma signifies differentiation with respect to Xi. The
preceding condition can be simplied for incompressible, isotropic rigid-plastic solids having
rate-constitutive relation of the form [10]:

( 9CTkl) if
9CTkl

hfjj = mij mkl 9Ct mkl 9Ct > 0

=0 if
9CTkl

(2)mkl 9Ct s; 0

Here, fij and 9Cid9Ct are the tensors of plastic strain-rate and the Jaumann derivative of the
Kirchhoff stress, respectively, h is a positive scalar measure of the current rate of
work-hardening and m,j are the components of the unit outward normal to the current yield
surface in 6-dimensional stress space. The uniqueness criterion (1) can now be written as (see,
e.g. [7])

f (hA'jA"-~"Wk'Wjk)dV-pl n,w-,wjdS >0I I} IJ ,I • I t.J P
V ~

(3)

where (J'jj are the components of the Cauchy stress and Wi == Vi are incompressible velocity fields
vanishing on Sv and are associated with strain-rate Aij == ~flj that are either zero or parallel to mij
(though not necessarily in the same direction as mij). The application of the uniqueness condition
(3) requires the construction of the most general velocity field compatible with direction of
strain-rate given by the stress-distribution at a generic instant during the process of deformation.

FORMULATION OF THE PROBLEM

Consider a closed-ended rigid-plastic cylinder initially of length 10 , inner radius ao and outer
radius boo Suppose that by some arbitrary combination of internal pressure and axial tension, the
cylinder is deformed to the current state in which the material is everywhere at the yield-point
and obeys the von Mises yield condition; in the current state let it be assumed that the dimensions
of the cylinder are I, a and b. Provided that the cylinder is long, the state of stress should be
effectively independent of the axial coordinate z, except near the ends. Furthermore, transverse
plane sections should remain plane. The combined radial and axial strain-rate must, therefore, be
expressible by the following velocity components in the cylindrical polar coordinate system r, 9,
z:

Co
u = -Aor +-'r ' v =0; W = 2Aoz (4)

where A o, Co are arbitrary constants. Then, according to the flow rule

Here, the prime denotes the deviatoric part of the stress. If this is substituted in the von Mises
yield condition

there results
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where (3 = AD/Co. Since the stresses are independent of z and 8, two of the three equilibrium
equations are automatically satisfied; the equation of equilibrium in the radial direction is

du" _ UfHl - U" = 0
dr r .

Since U~8 - U~r = U88 - u", we have

du" U88 -u" 2k(r)
dr r r(1 +3{32r'4)i/2'

Hence, using the boundary condition on r = b,

and, therefore,

Using the boundary condition on r = a, we find

where p is the internal pressure. The distribution of axial stress is

U zz = u" - (2u~r +U ~8)

(1 +3{3r
2

) Ib
2k(r)

= (1 +3{32r4)Jn k(r) - r r(1 +3{32 r4)i/2 dr.

Knowing U zz , the total axial load l' is found to be

and, therefore, the applied axial load (tension) is

(5)

(5a)

(6)

(7)

(8)

(9)

(10)

From (8) and (10), it is clear that both the axial load and the pressure are functions of Ao, Co. If
the load and the pressure are specified, the values of AD and Co can be determined; in other
words, for some particular values of Aoand Co, there is a definite combination of the load and the
pressure which must be applied to produce given relative rates of extension and expansion.
Consider, for example, the case of a thin-walled cylinder. The yield stress k may be assumed to
be constant throughout the thickness t which is very small compared to the mean radius R. Then,
from (8) and (10), it follows that

(11)

ADMISSIBLE VELOCITY FIELD

Based on the current stress distribution, the directions of the strain-rate AIj == ~Eij can be
determined. The components of strain-rates in r, 8, z-directions should be proportional to the
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deviatoric stresses in the corresponding directions, and in addition, in cylindrical polar
coordinates, they should satisfy

(12)

Expressed in terms of the velocity components u, v, W (now interpreted as the components in the
r, 8, z-directions, respectively, of the difference of velocity fields in two modes), (12) is written as

av +.!. aw =0
az r a8

au + aw == o.
az ar

(13)

(14)

(15)

(16)

A method of obtaining the most general solution of partial differential eqns (13)-(16), subject
to the requirement that strain-rates are proportional to stress-deviators, is shown in the appendix.
This solution for f3 ¢ 0 is

u= CG- f3r) +B{(log r -1) +~(r2+2z2)} cos (8 +ex)

v= -B{log r +~(2z2- ,2)} sin (8 + ex)

w 2f3Cz - 2f3Brz cos (8 + ex) (17)

where C, B and ex are arbitrary constants and the significance of f3 = Ao/Co is mentioned in the
previous section. Since no kinematic boundary conditions are specified, (17) is the complete
solution for the admissible velocity field. The terms with the constant C represent the uniform
mode, while the other terms represent a possible bifurcation from this mode.

APPLICATION OF UNIQUENESS CRITERION

Introducing the physical components of velocity and considering the prevailing stresses, the
terms hAijAij, aijWk.iWj,k and niWi,jWj in (3) can be transformed to give

at the cylindrical surface

[(au)2 (1 av U)2 (aW)2]hAijAii = h ar + ra8 +r + az

aj'WikWk' = arr[(au)2 + av(.!. au _.!::) +aw au]
I, ,I ar ar r af) r ar az

+a
86

[('!' au _E)aV +(.!. av +~)2 +aw au]
r af) r ar r af) r ar az

{

_ [auu +(.!. au _E)v +au w]
ar r af), az

niWi,kWk =. a I a a
± [a; u +r a; v + a; W ] at cylinder ends.

(18)

(19)

(20)

If the velocity field (17) is used in expressions (10)-(20) and each term in (3) is integrated along
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the z- and the l1-directions, noting that functions in 11 have a period 2'IT, we get

529

Iv hAiiAij dV = hirh[B 2G+ 3f3 2r3 ) + 2C2e~ + 3f32r)] dr (21)

Iv O"ijWi,kWk,i dV = 'lT1r [O"rr{4B2(f3r - ~ f32/2 r) + 2C2(~ + 2: + f32 r)}

+ 0"88{2C2(~- 2:+ f32 r) -~f32B2/2r}

+ O"zz{4B 2f32(r 3- 2r1 2)+8C2f32 r}1dr (22)

It may be mentioned here that, in evaluating the preceding surface integral,t the contribution
from the cylinder-ends is taken in an approximate manner since the velocity field (17) is valid only
at sections sufficiently away from the closed-ends of the cylinder. However, if it is assumed that
the ends are closed in such a manner that the edges are permitted to warp freely but not the
central portion, the velocity distribution at r = a may be considered to hold for 0 0;;; r ~ a at the
ends.

From the analysis in Section 3, we know that

Hence, (22) can be modified to read

(22a)

(24)

With the use of (5a) and the boundary conditions on r = a, b, each term involving O"rr in (22a)
can be integrated by parts. The resulting expression is combined with (23) to give

f O"ijWi,kWk,j dV + p f niWi,kWk dSp = 'IT/p[B 2(1- f32 a 4)]
v JsP

'i b 2k(r) [2 23 2( 1 f3)J+ 'IT a (l + 3f32r4)112 B (13 r - 2f3r) + 4C ? - r dr

'i
b 6f32rk(r) 2 2 3 2 2 2

+'IT a (1+3f3 2r4)i/2[2B 13 (r -2r/ )+4C 13 r]dr.

In (24), the pressure p can also be expressed in terms of the yield stress k(r) by using the
relation (8); the expression (24) then becomes

tThis difficulty does not arise if the cylinder-ends are open. However, it is a separate problem forfurther investigation.
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Finally, combining (21) with (25), the uniqueness criterion (3) can be written more simply in
the following form:

For (26) to hold for arbitrary C, B it is necessary and sufficient that

(27)

(28)

Inequalities (27) and (28) form a sufficient condition for the uniqueness of deformation of the
cylinder under internal pressure and tension.

DISCUSSION

Let us first consider the implications of the preceding inequalities in the context of thin-walled
cylinders. As can be readily seen, it is sufficient to study the condition (27) alone. The variations
of hand k through the thickness of the cylinder can be neglected, and (27) is immediately
integrated to give

(29)

where R is the mean radius of the cylinder. Using the relation (11), we can rewrite (29) as

(29a)

in which a = T/3p7TR 2
• For a material having the constitutive law (2) and obeying the von Mises

yield condition, it can be shown (see, e.g. [5]) that the hardening parameter h is expressible as

Ida
i=f;cte (30)

where (j and e are, respectively, the genralized stress and the generalized strain, defined by the
relations

__ (3 , ,)112
U - 2U ijU ij , (31)

and zdenotes the length of the subtangent to the generalized stress-strain curve. Then, we get

since u:ju:j = 2k 2
• Using (32), the result (29a) reduces to

(32)

(33)

which is the same as obtained by Kumar and Ariaratnam [II] from an independent analysis for a
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thin-walled cylinder. In the extreme cases a = 0, 00, (33) yields the familiar results

531

1-= > y'3z
1->1
i

for internal pressure only (a = 0)

for simple tension only (1/a = 0).

Returning to the analysis of thick-walled cylinders, the two inequalities (27) and (28) should be
satisfied simultaneously for the deformation to be unique. Since the terms with the constant C in
the velocity field (17) represent the uniform mode, the inequality (27) is equivalent to the
condition that the internal pressure and/or the tension should not reach a maximum. We wish to
find out whether or not (28) is satisfied whenever (27) is.

When the cylinder is subjected to internal pressure alone, conditions (27) and (28) reduce to
those obtained in [8]. On the other hand, for the case of simple tension we get

and

C
2 f r{ h -~(ky'3)} dr > 0 (34)

(35)

The condition (35) is sufficient for uniqueness, because then (36) holds too. Therefore, uniqueness
is guaranteed so long as the tension does not attain a peak value. This result was first given by
Hill [2].

In general, the variations of hand k with r must be taken into account. For the von Mises
solid, h can be expressed by the relation (30). Taking the logarithmic strain measure, we can write

so that

r
err = log-,

ro
I

ezz = log/;;,

(36)

In (36), r is the current radial distance of a particle which was initially at the radius ro, and 10 , I are
the initial and the current lengths of the cylinder, respectively. The relation (36) is supplemented
by the incompressibility condition

thereby making it possible to relate all the parameters in the current state to those in the reference
state. The yield stress k is considered to be a function of the generalized strain and, based on the
Ramberg-Osgood relation in classical plasticity, is assumed to be represented by the relation

(37)

where ko and m are material constants. Now, using (30), (31), (36) and (37), all the integrals in the
inequalities (27)-(28) can be evaluated. Such a calculation was performed for cylinders having
wall-ratios (bo/ao) up to 3.0 and for the range of strain-hardening index 0.05"" m "" 0.50. It was
observed that the condition (28) was always satisfied at strains large enough that the condition
(27) started to fail. This means that the deformation in this case is unique so long as the pressure
or the tension does not reach a maximum. Nevertheless, the contrary may be true for some
material models other than (37). For example, in the case of cylinders made-up of composite
shells, the situation may be entirely different. In each case, the conditions (27}-(28) require a
thorough investigation and, at this stage, no further conclusion can be drawn.

55 Vol. 12 No. 7-E
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When the condition (27) is the governing one during the process of continuing deformation,
either the pressure or the tension (or both) reaches the peak value. Using relations (8), (l0), (36)
and (37) the pressure and the axial load were calculated for increasing values of the expansion
(a Iao) and the extension (1//0). Three situations were found to occur: (i) Pressure reaching a
maximum, while axial load is still increasing. (ii) Axial load reaching a maximum, while pressure
is still increasing. (iii) Both pressure and axial load reaching a maximum simultaneously.
'Pressure-tension interaction curves' were drawn by taking the maximum value of the pressure
(axial load) and the corresponding value of the axial load (pressure). Figure 1 shows such curves
for particular value of m and the wall-ratios. In each case, the non-dimensional values of pressure
p Ikoand tension T Iko7T(b0

2
- a02

) are plotted. It may be noted that for every value of bolao the
ratio Tlp7T(b02

- a02
) has a definite value which corresponds to the case (iii) above. For bolao

equal to 1.20, 1.40, 1.75, 2.00, these values are found to be 2.08, 1.35, 1.09, 0.95, respectively.
Value less than these correspond to the case (i) while the greater ones correspond to the case (ii).

As is well known, and also seen from the present analysis, in the case of simple tension no
bifurcation is possible before the attainment of a maximum load. However, for a cylinder under
internal pressure alone, the possibility exists of a bifurcation before the loss of stability [8]. It is
worth investigating, therefore, what happens when the cylinder is subjected to internal pressure
and a small tension. Conditions governing the uniqueness of deformation in such a case can be
obtained from (27}-(28) by setting the terms in f32 equal to zero; they become

(27a)

and

(28a)

For the most general case, not assuming material homogeneity, all that may be established is
that if (27a) holds for h > 0 in a ~ r ~ b, then
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and consequently (28a) holds if

533

(38)

Otherwise, non-uniqueness may follow and there exists a possibility for the occurrence of a
bifurcation preceding a stability loss. In this event, it means that the cylinder can still withstand an
increase in pressure and tension.

CONCLUDING REMARKS

It has been shown that in the case of thick-walled cylinder subjected to an arbitrary
combination of internal pressure and tension, the uniqueness is normally guaranteed up to the
loss of stability (i.e. when either of the two or both loads reach a maximum). This is true at least
for the material model described by the relation (37) which is similar to the Ramberg-Osgood
relation in classical plasticity. For composite shells, however, the situation may be quite different.
It has been found that, for a cylinder under pressure and small tension, and without any
assumption of material homogeneity, the possibility exists of a bifurcation before stability loss.

"Pressure-tension interaction curves" have been obtained for some values of the wall ratio
and the strain-hardening index. For each wall-ratio, there is a point on the curve which gives
maximum values of the pressure and the tension, attained simultaneously during the process of
deformation. This point separates each curve in two regions; one region corresponds to the
occurrence of the maximum pressure first while the other one to the maximum tension first.

It may be mentioned here that Hill's uniqueness criterion employed in this investigation is one
of sufficiency only. Hence, the critical stresses are merely lower bounds with r~spect to the loss
of uniqueness. However, it is known that, for at least some of the problems studied so far in the
rigid-plastic theory using Hill's method, the uniqueness conditions have proved to be also
necessary. Hence, it may be expected that the conditions, derived in this paper for the uniqueness
of deformation, are necessary as well. A definite conclusion can be drawn only by solving the
related rate-problem, i.e. from the complete bifurcation solution.

Although the constitutive relation (2) is sufficiently general, the formulations presented in this
investigation are for a material obeying the von Mises yield criterion, isotropic hardening rule and
small strains. Moreover, the deformation theory of plasticity has been adopted for numerical
calculations, as suggested by relation (36) where in the concept of generalized strain is used. From
eqns (6) and (7) it is obvious though that in general proportional stressing does not prevail during the
entire deformation course; use of the deformation theory is, therefore, an approximation. Strictly,
an incremental theory should be adopted. It is expected, however, that for cylinders with small
wall-thickness and for not very large plastic deformations, the results obtained under present
approximation will be close enough to those resulting from an in<:remental approach.
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APPENDIX
Equations (I3}-(16) can be rewritten as

i!!!+~+l av + aw =0
ar r r ao az

l.iJU +.i (E) = 0
r2 aO ar r

av+!aw=O
az r ao

au +aw =0.
az ar

(39)

(40)

(41)

(42)

For solving the above set of partial differential equations, first consider eqns (4O}-(42). Equation (40) can be satisfied by
choosing an arbitrary function q such that

Similarly, two arbitrary functions I andg may be chosen in order to satisfy equations (42) and (41), respectively:

(43a)

From (43a}-(43c), we immediately obtain:

U=~
ar'

lag
v=, ao'

w=-~
az

w=-~.
az

(43b)

(43c)

Equations (45) and (46) can be integrated to give

~_ r2~=0
ar ar

! ag + r aq =0
r aO aO

al _ ag =0.
az az

g +r'q= H(r, z)

I g= F(r, 0)

(44)

(45)

(46)

(47)

(48)

where H, F are arbitrary functions. From (44), (47) and (48), the functions I, g, q are found to be

f'l a
g= H(r, z)- r 2r' ar.[H(r', z)+ F(r', 0)] dr' - rO(O, z)

f'l a
1= F(r, 0) +H(r, z)- r 2r' ar' [H(r', z) +F(r', 0)] dr' - rO(O, z)

q =1}'21
, -E,[H(r', z)+ F(r', 0)] dr' +lG(O, z)

r r ar r

where function G(O, z) is arbitrary. Hence, using (43a}-(43c), we get

I a f'l au= 2"a,[F(r, 0) +H(r, z)]- 2r' -;J;7[H(r', z) +F(r', 0)] dr' - G(O, z)

I,I a' a
v= - 2r' ar' ao F(r', 0) dr' - ao G(O, r)

I
, I a' a a

w=r -2'-a'H(r',z)dr'--a H(r,z)+r-G(O,z).r r az z Jz

If, for convenience, we define two functions Q(r, 0) and P(r, z) in the form

Q(r, 0) = r2~' a~' F(r', 0) dr'

P(r, z) =H(r, z)- rI'-2
1
, -E,H(r', z)dr'r Jr

eqns (49}-(51) are simplified and become

U= raQ~~ 0) + ap~~ z) _ Q(r, 0)- G(O, z)

(49)

(50)

(51)

(52)
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aQ(r,8) aG(8, z)v=--------
a8 a8

• ap(r, z) aG(8, z)
w = - ---+ r---.az az
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(53)

(54)

Expressions (52)-(54) constitute the general solution of the eqns (40)-(42). The remaining eqn (39) can be used to
solve for per, z), Q(r, 8), G(8, z), remembering that functions Q and G are periodic in 8. The general solution of the set of
partial differential eqns (39)-(42) then becomes (excluding all rigid translations and rotations):

U= e + e,z + B(log r-I)cos (8 + a)- D(r'+2z')cos (8 + a)
r

-i ~ [cos {(n'-I)II'IOg~} + (n' _1)"' sin {en' -I)II'log~}J cos (n8 + an)
n -2 n Tn Tn

-f J, J,(vr)[£. COS VZ + F. sin vz] dv
• v

v = -B sin (8 + a) log r +D(-r' + 2z') sin (8 + a)

+i Pn cos {en' ~ I)"'IOg~} sin (n8 + an)
,.-2 Tn

W = -e,IOg~+4Drz COS (8 + a) - f J, Jo(vr)[-E. sin vz + F. cos vz] dv.
'0 v "

(55)

where e, e" B, D, Pn, n, rn, E, F are arbitrary constants and Jo, J, are the Bessels functions of the first kind of the order zero
and one, respectively. The solution (55) is then made to satisfy the requirement that the strain rates in the r, 8, z-directions are
proportional to the deviatoric stresses (see sec. 3) in the corresponding directions; for example

~/(!!+l av) = _(I +{3r')/(I- (3r').
ar r r a8

(56)

This requirement precludes the presence of certain terms in the general solution (55). The only admissible solution for {3 ~ 0is
given by (17).

For the case {3 ~ 00, i.e. when cylinder is subjected to axial tension alone, the velocity field given in [2] should be used
since it has four arbitrary constants in contrast to two constants in the solution obtained from (17). However, it is known that
the inequalities associated with these two extra constants, are not the critical ones for uniqueness. When {3 = 0, i.e. the
cylinder is subjected to pressure alone, the actual solution is wider than that obtained from (17), as given in [8]. This is not a
matter of surprise. The situation, in which a wider class of velocity field is available for plane strain (essentially
corresponding here to the case (3 =0) than for the genuinely three-dimensional case, is a familiar one when dealing with
rigid/plastic materials with a smooth yield surface[2].


